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a b s t r a c t

It is well known that the normal mixture with unequal variance has unbounded

likelihood and thus the corresponding global maximum likelihood estimator (MLE) is

undefined. One of the commonly used solutions is to put a constraint on the parameter

space so that the likelihood is bounded and then one can run the EM algorithm on this

constrained parameter space to find the constrained global MLE. However, choosing the

constraint parameter is a difficult issue and in many cases different choices may give

different constrained global MLE. In this article, we propose a profile log likelihood

method and a graphical way to find the maximum interior mode. Based on our proposed

method, we can also see how the constraint parameter, used in the constrained EM

algorithm, affects the constrained global MLE. Using two simulation examples and a real

data application, we demonstrate the success of our new method in solving the

unboundness of the mixture likelihood and locating the maximum interior mode.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Let x¼ ðx1; . . . ; xnÞ be independent observations from an m-component normal mixture density

f ðx; hÞ ¼ p1fðx;m1;s2
1Þþp2fðx;m2;s2

2Þþ � � � þpmfðx;mm;s2
mÞ;

where h¼ ðp1; . . . ;pm�1;m1; . . . ;mm;s1; . . . ;smÞ, fð�;m;s2Þ is the normal density with mean m and s2, and pj is the
proportion of j th component with

Pm
j ¼ 1 pj ¼ 1. The log-likelihood for x is

logLðh;xÞ ¼
Xn

i ¼ 1

logfp1fðxi;m1;s2
1Þþp2fðxi;m2;s2

2Þþ � � � þpmfðxi;mm;s2
mÞg: ð1Þ

For a general introduction to mixture models, see Lindsay (1995), Böhning (1999), McLachlan and Peel (2000), and
Frühwirth-Schnatter (2006).

It is well known that logLðh;xÞ in (1) is unbounded without any restriction on the component variance, and so the global
maximum likelihood estimator (MLE) of h, by maximizing (1), does not exist. For example, if we set m1 ¼ x1 and let s2

1-0, the
likelihood value goes to infinity. However, for mixtures of normal distributions, at least in the univariate case, there is a sequence
of roots corresponding to local maxima in the interior of the parameter space that are consistent and asymptotically normal and
efficient (Kiefer, 1978; Peters and Walker, 1978). Note that if there are multiple local maxima in the interior of the parameter
space, there is also a problem of identifying the consistent sequence, which is a very difficult problem itself. In this article, we do
not focus on this issue. Instead, when the likelihood is unbounded, we define the MLE as the maximum interior/local mode.
Hathaway (1985) provided some theoretical support of using the maximum interior/local mode.
ll rights reserved.
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One of the commonly used methods to avoid the unboundness of the log likelihood and to find the maximum interior
mode is to run the EM algorithm (Dempster et al., 1977) over a constrained parameter space

OC ¼ fh 2 O : sh=sjZC40;1rhajrmg; ð2Þ

where C 2 ð0;1�, and O denotes the unconstrained parameter space. See Hathaway (1985, 1986) and Bezdek et al. (1985)
for more detail. However, a big challenge for this method is to choose the appropriate cut point C. If C is too large, it is
possible that the consistent local maxima does not belong to the constrained parameter space OC and thus the found
estimate will be misleading. Even the consistent local maxima is in OC , it is still possible that OC misses some interior
modes worthy of consideration. On the other hand, if C is too small, it is possible that some boundary point, satisfying
sh=sj ¼ C for some h and j, maximizes the log likelihood over the constrained parameter space OC . In this situation, the
found estimate is on the boundary of OC and thus depends on the choice of C.

Another commonly used method is to use maximum penalized likelihood estimator that adds penalty term to the unequal
variance. See Chen et al. (2008) and Chen and Tan (2009).

In this article, we propose a profile log-likelihood method and a graphical way to solve the unboundness issue of likelihood and
find the maximum interior mode for the normal mixture with unequal variance. Unlike the constrained EM algorithm (Hathaway,
1985, 1986), our proposed method does not need to specify a cut point C. In addition, based on our proposed method, we can
clearly check whether there are some other minor interior modes and see how the choice of C in (2) affects the constrained global
MLE. Using the simulation study and a real data application, we demonstrate the effectiveness of our proposed method and show
how the selection of cut point C affects the constrained MLE (Hathaway, 1985, 1986).

The rest of the paper is organized as follows. Section 2 proposes a profile log likelihood method to solve the
unboundness issue of the likelihood function for the normal mixture with unequal variance. In Section 3, we use two
simulation examples and a real data application to demonstrate how our proposed method works. We summarize our
proposed method and give the discussion in Section 4.

2. New method

In this section, we will first introduce our profile log likelihood method for two component normal mixtures and provide a
simple EM algorithm. We will then extend the profile log likelihood method to normal mixtures of more than two components.

2.1. Mixtures of two components

Given a sample x¼ ðx1; . . . ; xnÞ from the two-component normal mixture, the log-likelihood for x is

logLðh;xÞ ¼
Xn

i ¼ 1

logfp1fðxi;m1;s2
1Þþp2fðxi;m2;s2

2Þg; ð3Þ

where h¼ ðp1;m1;m2;s1;s2Þ and

fðx;m;s2Þ ¼
1ffiffiffiffiffiffi
2p
p

s
exp �

1

2s2
ðx�mÞ2

� �
;

Note that without any restriction, the above log-likelihood is unbounded and the global MLE is undefined. In this
section, we propose a profile likelihood method to avoid the unboundness issue and to find the maximum interior mode of
logLðh;xÞ.

Let s1 ¼ ks2 � ks, where k 2 ð0;1�. Then the log-likelihood of (3), for each fixed k, is

logLðg;x; kÞ ¼
Xn

i ¼ 1

logfp1fðxi;m1; k
2s2Þþp2fðxi;m2;s2Þg: ð4Þ

where g¼ ðp1;m1;m2;sÞ. Note that for each fixed k, the log-likelihood of (4) is bounded. Hence the global MLE for (4) is well
defined. In order to estimate k, we define the profile log-likelihood for k as

pðkÞ ¼max
g

logLðg;x; kÞ; ð5Þ

where logLðg;x; kÞ is defined in (4).
Let

OC ¼ fh 2 O : minðs1;s2Þ=maxðs1;s2ÞZC40g; ð6Þ

where O is the unconstrained parameter space for h.

Theorem 2.1. We have the following properties about the profile likelihood p(k) defined in (5).
(a)
 The profile likelihood p(k) is unbounded and goes to infinity when k goes to zero.

(b)
 The ĥ ¼ ðp̂1; m̂1; m̂2; ŝ1; ŝ2Þ maximizes the log likelihood logLðh;xÞ of (3) constrained in OC , where ŝ1r ŝ2, if and only if

k̂ ¼ ŝ1=ŝ2 maximizes the profile log-likelihood p(k) of (5) in KC, where KC ¼ fk 2 ð0;1� : kZCg.
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(c)
 Suppose ~k is a local mode for the profile log-likelihood p(k) with the corresponding ~g ¼ ð ~p1; ~m1; ~m2; ~sÞ. Let
~h ¼ ð ~p1; ~m1; ~m2;

~k ~s; ~sÞ. Then ~h is a local mode for the log likelihood logLðh;xÞ of (3).
The proof of Theorem 2.1 is given in the Appendix. From (a), one can know that p(k) is also unbounded. Therefore, we
cannot estimate k by maximizing p(k) directly. Based on (b), one can know that finding the maximum interior mode of
logLðh;xÞ of (3) is equivalent to finding the maximum interior mode of p(k). Noting that k is a one-dimensional parameter,
hence our profile likelihood method transfers the problem of locating the maximum interior mode for a high-dimensional
function logLðh;xÞ into locating the maximum interior model for a one-dimensional function p(k).

For one dimension function p(k), one can easily use the plot of p(k) versus k to locate the maximum interior mode of p(k)
without choosing a cut point C in advance, which is one of the major advantages of our proposed method and will be
illustrated in more detail in Section 3. Let k̂ be the maximum interior mode of (5). Then fixing k at k̂, we can find the MLE of
(4), denoted by ĝðk̂Þ, and the corresponding ĥðk̂Þ. The ĥðk̂Þ is our proposed maximum interior mode of (3).

Based on the plot of p(k) versus k, one can also clearly see how the cut point C in (6) affects the constrained MLE
(Hathaway, 1985, 1986). We will demonstrate this using examples in Section 3.

Note that the profile log-likelihood p(k) does not have an explicit form. Therefore, we can only numerically evaluate p(k)
for a set of grid points of k. The following is the EM algorithm to find p(k) for any fixed k.

Algorithm 1. Starting with the initial parameter values fp̂ð0Þ1 ; m̂ð0Þ1 ; m̂ð0Þ2 ; ŝð0Þ1 ¼ kŝð0Þ2 g, iterate the following two steps until
convergence.

E Step: Compute the classification probabilities:

p̂
ðtþ1Þ
ij ¼

p̂ðtÞj fðxi; m̂
ðtÞ
j ; ŝ

2ðtÞ
j ÞP2

l ¼ 1 p̂
ðtÞ
l fðxi; m̂

ðtÞ
l ; ŝ

2ðtÞ
l Þ

; i¼ 1; . . . ;n; j¼ 1;2

M step: Update the component parameters:

m̂ðtþ1Þ
j ¼

Pn
i ¼ 1 p̂

ðtþ1Þ
ij xiPn

i ¼ 1 p̂
ðtþ1Þ
ij

; p̂ðtþ1Þ
j ¼

Pn
i ¼ 1 p̂

ðtþ1Þ
ij

n
; j¼ 1;2;

ŝ2ðtþ1Þ
1 ¼

Pn
i ¼ 1½p̂

ðtþ1Þ
i1 ðxi�m̂

ðtþ1Þ
1 Þ

2
þk2p̂

ðtþ1Þ
i2 ðxi�m̂

ðtþ1Þ
2 Þ

2
�

n
;ŝðtþ1Þ

2 ¼ ŝðtþ1Þ
1 =k:

Similar to the general EM-algorithm, this algorithm is only guaranteed to converge to a local mode. In order to find the
maximal mode (global MLE) for each fixed k, we may run the algorithm from several initial values and choose the
converged mode which has the largest log-likelihood (note that the maximal mode is well defined since the log likelihood
(4) is bounded for each fixed k).

2.2. Mixtures of more than two components

When there are more than two components, i.e. m42, let k¼ sð1Þ=sðmÞ, where sð1Þrsð2Þr � � �rsðmÞ are ordered
sequence of ðs1; . . . ;smÞ. Let

Yk ¼ fh¼ ðp1; . . . ;pm�1;m1; . . . ;mm;s1; . . . ;smÞjsð1Þ ¼ ksðmÞg:

Then one can define the profile log likelihood as

pðkÞ ¼max
h2Yk

Xn

i ¼ 1

logf ðxi; h; kÞ; k 2 ð0;1�: ð7Þ

It can be easily seen that the above defined profile log likelihood p(k) also has the properties given in Theorem 2.1. In
addition, similar to the way proposed in Section 2.1, one can also use p(k) in (7) to find the maximum interior mode and
check how the constraint parameter affects the constrained MLE for the constrained EM algorithm.

Due to the complicated nature of the constrained optimization, finding p(k) is not trivial for each fixed k. In (t+1)th step
of EM algorithm, E step finds the classification probabilities

p̂
ðtþ1Þ
ij ¼

p̂ðtÞj fðxi; m̂
ðtÞ
j ; ŝ

2ðtÞ
j ÞPm

l ¼ 1 p̂
ðtÞ
l fðxi; m̂

ðtÞ
l ; ŝ

2ðtÞ
l Þ

; i¼ 1; . . . ;n; j¼ 1; . . . ;m:

In M step, the component means and the mixing proportions are updated by

m̂ðtþ1Þ
j ¼

Pn
i ¼ 1 p̂

ðtþ1Þ
ij xiPn

i ¼ 1 p̂
ðtþ1Þ
ij

; p̂ðtþ1Þ
j ¼

Pn
i ¼ 1 p̂

ðtþ1Þ
ij

n
; j¼ 1; . . . ;m:



ARTICLE IN PRESS

W. Yao / Journal of Statistical Planning and Inference 140 (2010) 2089–20982092
Let nj ¼
Pn

i ¼ 1 p̂
ðtþ1Þ
ij and S2

j ¼
Pn

i ¼ 1 p̂
ðtþ1Þ
ij ðxi�mðtþ1Þ

j Þ
2. For simplicity of notation, we omit the dependence of nj and Sj on

t+1. For a fixed k 2 ð0;1�, based on the EM algorithm theory, r̂ðtþ1Þ
¼ ðŝðtþ1Þ

1 ; . . . ; ŝðtþ1Þ
m Þ are updated by minimizing

Xm

j ¼ 1

njlogsjþ
S2

j

2s2
j

 !
; ð8Þ

subject to sð1Þ ¼ ksðmÞ.
Note that due to the label switching issue of mixture models (Yao and Lindsay, 2009), the component index does not

have real meaning. Without loss of generality, we will assume that the component index satisfies
S2

1=n1rS2
2=n2r � � �rS2

m=nm. (If the component index does not satisfy the above constraint, we can always permute the
component index such that the above constraint holds.)

Note that when k=1, the component variance are all equal and thus the computation of p(1) is straightforward. In the
following, we will mainly consider the situation when 0oko1.

Proposition 2.1. Let r̂ðtþ1Þ
¼ ðŝðtþ1Þ

1 ; . . . ; ŝðtþ1Þ
m Þ be the maximizer of (8), subject to sð1Þ ¼ ksðmÞ, where k 2 ð0;1Þ. Let

ðŝðtþ1Þ
ð1Þ ; . . . ; ŝðtþ1Þ

ðmÞ Þ be the corresponding ordered sequence. Then, we have the following results about r̂ðtþ1Þ.
(a)
 If S2
1=n1rk2S2

m=nm, there exists 1r io jrm such that ŝðtþ1Þ
1 ¼ ŝðtþ1Þ

2 ¼ � � � ¼ ŝðtþ1Þ
i rSiþ1=

ffiffiffiffiffiffiffiffiffiffi
niþ1
p

,
ŝðtþ1Þ

j ¼ ŝðtþ1Þ
jþ1 ¼ � � � ¼ ŝ

ðtþ1Þ
m ZSj�1=

ffiffiffiffiffiffiffiffiffi
nj�1
p

, and ŝðtþ1Þ
l ¼ Sl=

ffiffiffiffi
nl
p

, l¼ iþ1; . . . ; j�1.
ðtþ1Þ ðtþ1Þ ffiffiffiffiffip ðtþ1Þ ðtþ1Þ ffiffiffip
(b)
 If S2
1=n14k2S2

m=nm, there exists 1r io jrm such that ŝ i ¼ ŝ
ð1Þ rS1= n1, ŝj ¼ ŝðmÞ ZSm= nm, and

ŝðtþ1Þ
l ¼ Sl=

ffiffiffi
n
p

l; lai and laj.
The proof of Proposition 2.1 is given in the Appendix. From the Proposition 2.1, we can see that the constrained
maximizer of (8) depends on whether S2

1=n1ok2S2
m=nm holds. When S2

1=n1rk2S2
m=nm, ŝðtþ1Þ

l ¼ ŝðtþ1Þ
ðlÞ , l¼ 1; . . . ;m. (Note

that we have assumed S2
1=n1rS2

2=n2r � � �rS2
m=nm.) However, when S2

1=n14k2S2
m=nm, ŝðtþ1Þ

ð1Þ is not necessarily equal to
ŝðtþ1Þ

1 and ŝðtþ1Þ
ðmÞ is not necessarily equal to ŝðtþ1Þ

m .

Proposition 2.2. (a) For any 1r io jrm,under the constraint that s1 ¼ s2 ¼ � � � ¼ si ¼ s and sj ¼ sjþ1 ¼ � � � ¼ sm ¼ s=k, the

objective function (8), as a function of s by fixing fsiþ1; . . . ;sj�1g, is minimized at

ŝ2
ði;jÞ ¼

Pi
l ¼ 1 S2

l þk2
Pm

l ¼ j S2
lPi

l ¼ 1 nlþ
Pm

l ¼ j nl

: ð9Þ

In addition, (8) is monotone decreasing when so ŝði;jÞ and monotone increasing when s4ŝði;jÞ.
(b) For any 1r io jrm, under the constraint that si ¼ s¼ ksj, the objective function (8), as a function of s by fixing

fsl; lai and lajg, is minimized at

�s2
ði;jÞ ¼

S2
i þk2S2

j

niþnj
: ð10Þ

In addition, (8) is monotone decreasing when so �sði;jÞ and monotone increasing when s4 �sði;jÞ.

The proof of Proposition 2.2 is given in the Appendix. Based on the Propositions 2.1 and 2.2, we propose to use the
following two steps to find r̂ðtþ1Þ that minimizes (8) subject to sð1Þ ¼ ksðmÞ.

Step 1: If S2
1=n1rk2S2

m=nm, for all pairs 1r io jrm, let ~rði;jÞ be the minimizer of (8) under the constraint
~s1 ¼ ~s2 ¼ � � � ¼ ~s i, ~sj ¼ ~sjþ1 ¼ � � � ¼ ~sm ¼ ~s1=k, ~s2

1rS2
iþ1=niþ1, and ~s2

mZS2
j�1=nj�1, when f ~s2

l ¼ S2
l =nl; l¼ iþ1; . . . ; j�1g

are fixed, where

~s2
1 ¼

ŝ2
ði;jÞ; k2S2

j�1=nj�1r ŝ2
ði;jÞrS2

iþ1=niþ1;

S2
iþ1=niþ1; ŝ2

ði;jÞ4S2
iþ1=niþ1;

k2S2
j�1=nj�1; ŝ2

ði;jÞok2S2
j�1=nj�1;

8>>><
>>>:

where ŝði;jÞ is defined in (9).
If S2

1=n14k2S2
m=nm, for all pairs 1r io jrm, let ~rði;jÞ be the minimizer of (8) under the constraint ~si ¼ k ~sj and ~s2

i rS2
1=n

and ~s2
j ZS2

m=nm, when f ~s2
l ¼ S2

l =nl; lai and lajg are fixed, where

~s2
i ¼

�s2
ði;jÞ; k2S2

m=nmr �s2
ði;jÞrS2

1=n1;

S2
1=n1; �s2

ði;jÞ4S2
1=n1;

k2S2
m=nm; �s2

ði;jÞok2S2
m=nm;

8>>><
>>>:

where �sði;jÞ is defined in (10).
Step 2: Let ð~i; ~jÞ be the index of (i,j) such that ~r

ð~i ;~jÞ minimizes (8) among ~rði;jÞs;1r io jrm. Then r̂ðtþ1Þ
¼ ~r

ð~i ;~jÞ minimizes
(8) subject to sð1Þ ¼ ksðmÞ.
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By careful analysis of the properties of r̂ðtþ1Þ, one might be able to further shorten the computations of Step 1 by skipping the
calculation of ~rði;jÞ’s for some (i,j). See the remarks after the proof of Proposition 2.1 in the Appendix for more detail.
3. Example

In this section, we will use two simulation examples and a real data application to show how our proposed method
works. For simplicity of reporting, we mainly consider the case when m=2. When m42, the results are similar. Algorithm
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Fig. 1. Profile log-likelihood plot for Example 1: (a) for all k values from 10�4 to 1; (b) for k values from 0.15 to 1.

Table 1
Local maximizers for Example 1.

Local maximizer log L p1 m1 m2 s1 s2

k=0.1891 �153.2144 0.0934 �0.1700 0.8280 0.2175 1.1503

k=0.4378 �152.9230 0.2199 �0.0567 0.9578 0.5092 1.1629

k=0.8209 �153.0170 0.2796 2.0455 0.2260 0.6791 0.8273
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1 is used to find the profile log-likelihood p(k) in (5) over 200 equally spaced grid points of k from 10�4 to 1. Note that
when k is close to zero, the smaller component variance, say s2

1, is also close to zero. Therefore, when k is small, the initial
value for m1 should be one of the observations, otherwise, it is possible that there will be no observations assigned to the
first component. For Algorithm 1, we used 30 initial values for each k. The initial values for mixing proportions p1 and p2

are both 1
2. The initial values for the larger component variance s2

2 is half of the sample variance. The first 15 initial values
for the component means are randomly sampled from the observations ðx1; . . . ; xnÞ. For each of the sampled component
means, say (xi,xj) for some iaj, we also used its permuted values (xj,xi) as the initial component means in order to avoid
misspecifying the labels between component means and component variance. When k is not close to zero, one might try
some other methods to choose the initial values. See McLachlan and Peel (2000, Section 2.12) and Karlis and Xekalaki
(2003).

3.1. Simulation studies
Example 1. One hundred observations are generated from 0.3N(0,0.52)+0.7N(1,1). Fig. 1 is the profile log-likelihood plot of
p(k) versus k. From the plot, we can see that p(k) goes to infinity when k goes to zero. To better look at the structure of the
profile log-likelihood plot for the interior parameter space, in Fig. 1(b), we also provide the plot excluding the area where k
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Fig. 2. Profile log-likelihood plot for Example 2: (a) for all k values from 10�4 to 1; (b) for k values from 0.03 to 1.
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is very close to zero and the corresponding log-likelihood is relatively very large. From Fig. 1(b), one can see that there are
three interior modes. The information about these three modes are reported in Table 1 (they can be easily located based on
the estimated profile log-likelihood p(k)). By comparing the values of log L, one can know that the maximum interior mode
is at k=0.4378.

Based on the profile log-likelihood p(k) and Fig. 1, one can also see that when ko0:07 the profile log likelihood is greater

than �152.9230 (the profile log likelihood value of the maximum interior mode). The value 0.07 can be found based on the

estimated p(k). Therefore, when the constrained EM algorithm (Hathaway, 1985, 1986) is used to find the MLE, if Co0:07

in OC of (6), the constrained MLE is on the boundary of the parameter space OC . In fact, in this case, the constrained MLE

even depends on the cut point C, which is not reasonable. If 0:07oCo0:4378, the constrained EM algorithm can find the

maximum interior mode and give the same result as our profile likelihood method. However, if C is too large, it is possible

for the constrained EM algorithm to miss some interior modes. For example, if 0:1891oCo0:4378, the constrained EM

algorithm will miss the first interior mode (k=0.1891). Although the missed one is not the maximum interior mode, in

many cases the interior mode can also provide useful information, especially for clustering application (McLachlan and

Peel, 2000, Section 8.3.2).

Example 2. One hundred observations are generated from 0.3N(0,0.52)+0.7N(1.5,1). Fig. 2 is the profile log-likelihood plot.
From the plot, we can see that there are about three interior modes. The corresponding information is reported in Table 2.
The main controversy is on the first mode with k=0.0361, denoted by ĥ1. Although ĥ1 has the largest log-likelihood among
all three modes, it is hard to say whether it is a real interior mode or a spurious mode that is very close to the boundary of
the parameter space. If one thinks that the mode ĥ1 with k=0.0361 is reasonable, then one might use it since it has the
largest likelihood among all three modes. If one thinks that ĥ1 is not of practical interest since one of the component
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Fig. 3. Histogram of crab data. The number of bins used is 30.

Table 2
Local maximizers for Example 2.

Local maximizer log L p1 m1 m2 s1 s2

k=0.0361 �142.9583 0.0685 �0.3670 1.0979 0.0376 1.0394

k=0.1516 �144.5090 0.1045 �0.4303 1.1642 0.1521 1.0036

k=0.4879 �143.6260 0.3515 0.0387 1.5172 0.4577 0.9380
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proportions is only about 0.07 and the corresponding variance is also very small, then one might choose the mode with
k=0.4879, which has the second largest likelihood in Table 2. In addition, from Fig. 2, one can also see that the
area around the mode with k=0.4879 is much larger than the area around the mode ĥ1 with k=0.0361. Therefore,
when using the general EM algorithm, one might expect that most of the initial values will converge to the mode with
k=0.4879.

Based on Fig. 2 and the estimated p(k), one can also get that when C40:0361 in OC of (6), the constrained EM algorithm

(Hathaway, 1985, 1986) will miss the first mode. When Co0:06, the constrained EM algorithm can always find the

estimate with larger log likelihood than the mode with k=0.4879. In this case, the constrained global MLE also depends on

the cut point C. If Co0:01, the constrained global MLE occurs at the boundary of OC and has larger log-likelihood than the

first mode of k=0.0361.

3.2. Real data application

The crab data: We consider the famous crab data set analyzed by Pearson (1894). The histogram of the data is shown in
Fig. 3. The data set consists of the measurements on the ratio of forehead to body length of 1000 crabs sampled from the
bay of Naples. Following Pearson (1894), we use a two-component normal mixture model to analyze this data set.
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Fig. 4. Profile log-likelihood plot for crab data: (a) for all k values from 10�2 to 1; (b) for k values from 0.15 to 1.
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Fig. 4 is our proposed profile log-likelihood plot. For this example, when k is from 10�4 to 10�2, the corresponding
log-likelihood is too large, which will affect the display of the plot. Therefore, we only provide the profile log-likelihood
plot for k values from 10�2 to 1. From the plot, we can see that there are only one interior mode (with k=0.6418). When
k=0.6418, the corresponding MLE of ðp1;m1;m2;s1;s2Þ is (0.5360, 0.6563, 0.6355, 0.0126, 0.0196).

If the constrained EM algorithm is used, based on Fig. 4 and the estimated p(k), when the cut point Co0:05 in OC of (6)
the constrained global MLE occurs on the boundary of OC and thus depends on the value C. When C40:05, the constrained
MLE is the same as the maximum interior mode found by our proposed profile log-likelihood method.

4. Discussion

In this paper, we proposed a profile log likelihood method to solve the unboundness issue of the likelihood function for
the normal mixture with unequal variance. Unlike the usual constrained EM algorithm (Hathaway, 1985, 1986), our
proposed method does not need to specify a cutting point C in advance. Based on the profile log-likelihood plot and the
estimated p(k), one can easily identify the maximum interior mode. In addition, based on our proposed method, one can
also clearly see how the cutting point C in (6) affects the constrained global MLE for the constrained EM algorithm
(Hathaway, 1985, 1986). The Matlab programs for calculating the profile likelihood is available to download at ‘‘http://
www-personal.ksu.edu/�wxyao/’’.

For multivariate normal mixture with unequal covariance matrix, Ri ði¼ 1; . . . ;mÞ, the likelihood function is also
unbounded. Similar to the univariate case, one can also put some constraint on the covariance matrix. For example, let k be
the minimum of all the eigenvalues of RhR

�1
j ð1rhajrmÞ or let k be the minimum of jRhj=jRjjð1rhajrmÞ (Hathaway,

1985; Ingrassia, 2004). Then one can define the profile log likelihood for k similar to (7) and use it to find the maximum
interior mode. The main difficulty lies on how to maximize the mixture likelihood under the above constraints. These
require further research.
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Appendix A. Proofs
Proof of Theorem 1. (a) Let m1 ¼ x1. Then logLðg;x; kÞ in (4) goes into infinity when k goes to zero. Then the result follows.

(b) Given any k 2 KC , let gðkÞ be the corresponding parameter maximizing logLðg;x; kÞ and hðkÞ be the parameter value

corresponding to gðkÞ. Noting that hðkÞ 2 OC and ĥ maximizes logLðh;xÞ in OC , hence

pðkÞ ¼ logLðgðkÞ;x; kÞ ¼ logLðhðkÞ;xÞr logLðĥ;xÞ:

Since k̂ ¼ ŝ1=ŝ2, one can easily know that hðk̂Þ ¼ ĥ and pðk̂Þ ¼ Lðĥ;xÞ. Hence pðk̂ÞZpðkÞ. Therefore, k̂ maximizes p(k) in KC.

The reverse argument can be proved similarly.

(c) Suppose ~h is not a local mode for the log likelihood of logLðh;xÞ of (3). Then for any given small e40, then exists a h

satisfying Jh� ~hJre and logLðh;xÞ4 logLð ~h;xÞ, where J � J is the Euclidian norm. Let h ¼ ðp1;m1;m2;s1;s2Þ and k ¼ s1=s2,

where s1rs2. Then pðkÞ ¼ logLðg;x; kÞ ¼ logLðh;xÞ, where g ¼ ðp1;m1;m2;s2Þ. Noting that pð ~kÞ ¼ logLð ~h;xÞopðkÞ, hence
~kak. Since Jh� ~hJre, where ~h ¼ ð ~p1; ~m1; ~m2;

~k ~s; ~sÞ, hence js1�
~k ~sjre and js2� ~sjre. Therefore

~k ~s�e
~sþe rk ¼

s1

s2
r

~k ~sþe
~s�e :

Let e-0 , then k- ~k. Since pð ~kÞopðkÞ for all k, ~k cannot be a local mode, which contradicts the assumption. Hence ~h is a

local mode for the log likelihood of logLðh;xÞ of (3). &

Before we prove Proposition 2.1, we first provide a useful lemma.

Lemma A.1. Let r̂ðtþ1Þ
¼ ðŝðtþ1Þ

1 ; . . . ; ŝðtþ1Þ
m Þ be the minimizer of (8), subject to sð1Þ ¼ ksðmÞ, where k 2 ð0;1Þ. Let

ŝðtþ1Þ
ð1Þ rŝðtþ1Þ

ð2Þ � � �r ŝðtþ1Þ
ðmÞ be the corresponding ordered minimizer. Then ŝðtþ1Þ

ð1Þ rS1=
ffiffiffiffiffi
n1
p

and ŝðtþ1Þ
ðmÞ ZSm=

ffiffiffiffiffiffi
nm
p

or

ŝðtþ1Þ
ð1Þ ZS1=

ffiffiffiffiffi
n1
p

and ŝðtþ1Þ
ðmÞ rSm=

ffiffiffiffiffiffi
nm
p

.

Proof. For simplicity of proof, we will assume that S1=n1oS1=n2o � � �oSm=nm. Let

Q ðrÞ ¼
Xm

j ¼ 1

njlogsjþ
S2

j

2s2
j

 !
:

http://www-personal.ksu.edu/&sim;wxyao/
http://www-personal.ksu.edu/&sim;wxyao/
http://www-personal.ksu.edu/&sim;wxyao/
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Note that

@Q ðrÞ

@s2
j

¼
nj

2s4
j

ðs2
j �S2

j =njÞ:

Hence Q ðrÞ is minimized when s2
j ¼ S2

j =nj. In addition, Q ðrÞ is monotone increasing when s2
j 4S2

j =nj and monotone
decreasing when s2

j oS2
j =nj.

If ŝðtþ1Þ
ð1Þ oS1=

ffiffiffiffiffi
n1
p

and ŝðtþ1Þ
ðmÞ oSm=

ffiffiffiffiffiffi
nm
p

, one can easily see that ŝðtþ1Þ
m ¼ ŝðtþ1Þ

ðmÞ ¼ s
ðtþ1Þ
ð1Þ =k, if considering Q ðrÞ as a function

sm by fixing other arguments. Suppose ŝðtþ1Þ
ð1Þ ¼ ŝ

ðtþ1Þ
i and Sj=

ffiffiffiffiffi
nj
p rŝðtþ1Þ

ðmÞ oSjþ1=
ffiffiffiffiffiffiffiffiffiffi
njþ1
p

. It can be seen that

ŝðtþ1Þ
l ¼ Sl=

ffiffiffiffi
nl
p

; lai and lr j, and ŝðtþ1Þ
l ¼ ŝðtþ1Þ

m ; jai and l4 j. However, under the above assumptions, when ŝðtþ1Þ
ð1Þ moves

closer to S1=
ffiffiffiffiffi
n1
p

and ŝðtþ1Þ
m ¼ ŝðtþ1Þ

ð1Þ =k moves closer to Sm=
ffiffiffiffiffiffi
nm
p

, the Q ðrÞ will decrease. Therefore, the contradiction occurs.

Similarly, we can prove the contradiction if we assume ŝðtþ1Þ
ð1Þ 4S1=

ffiffiffiffiffi
n1
p

and ŝðtþ1Þ
ðmÞ 4Sm=

ffiffiffiffiffiffi
nm
p

. Therefore, the result

follows. &

Proof of Proposition 2.1. (a) Based on Lemma A.1, since S2
1=n1rk2S2

m=nm, ŝðtþ1Þ
ð1Þ ZS1=

ffiffiffiffiffi
n1
p

and ŝðtþ1Þ
ðmÞ rSm=

ffiffiffiffiffiffi
nm
p

. Suppose
Si=

ffiffiffiffi
ni
p

r ŝðtþ1Þ
ð1Þ oSiþ1=

ffiffiffiffiffiffiffiffiffiffi
niþ1
p

and Sj�1=
ffiffiffiffiffiffiffiffiffi
nj�1
p o ŝðtþ1Þ

ðmÞ rSj=
ffiffiffiffiffi
nj
p

.

Based on the properties of Q ðrÞ as a function of sj, one can easily see that ŝðtþ1Þ
1 ¼ ŝðtþ1Þ

2 ¼ � � � ¼

ŝðtþ1Þ
i ¼ ŝðtþ1Þ

ð1Þ oSiþ1=
ffiffiffiffiffiffiffiffiffiffi
niþ1
p

, ŝðtþ1Þ
j ¼ ŝðtþ1Þ

jþ1 ¼ � � � ¼ ŝ
ðtþ1Þ
m ¼ ŝðtþ1Þ

ðmÞ 4Sj�1=
ffiffiffiffiffiffiffiffiffi
nj�1
p

, and ŝðtþ1Þ
l ¼ Sl=

ffiffiffiffi
nl
p

; l¼ iþ1; . . . ; j�1.

(b) Based on Lemma A.1, since S2
1=n14k2S2

m=nm, ŝðtþ1Þ
ð1Þ rS1=

ffiffiffiffiffi
n1
p

and ŝðtþ1Þ
ðmÞ ZSm=

ffiffiffiffiffiffi
nm
p

. Suppose ŝðtþ1Þ
ð1Þ ¼ ŝ

ðtþ1Þ
i and

ŝðtþ1Þ
ð2Þ ¼ ŝ

ðtþ1Þ
j . It can be easily seen that ŝðtþ1Þ

l ¼ Sl=nl; lai; laj and io j. In addition, if ŝðtþ1Þ
ð1Þ ¼ S1=

ffiffiffiffiffi
n1
p

, then ŝðtþ1Þ
ð1Þ ¼ ŝ

ðtþ1Þ
1 .

Suppose ŝðtþ1Þ
ðmÞ ¼ ŝ

ðtþ1Þ
j ¼ kŝðtþ1Þ

1 . If considering Q ðrÞ as a function of s1, we can easily prove that the minimizer is not

S1=
ffiffiffiffiffi
n1
p

. The contradiction occurs. Hence, ŝðtþ1Þ
ð1Þ oS1=

ffiffiffiffiffi
n1
p

. Similarly, we can also prove ŝðtþ1Þ
ðmÞ 4Sm=

ffiffiffiffiffiffi
nm
p

. &

Remarks. 1. From the above proof, we can see that we have proved the stronger results than Proposition 2.1, i.e. the strict
inequality holds for r̂ðtþ1Þ. Hence, in Step 1 of Section 2.2, we only need to consider ~rði;jÞ’s when the strict inequality
constraint holds. For example, if S2

1=n14k2S2
m=nm, we only need to consider ~rði;jÞ’s when k2=S2

m=nmo �sði;jÞoS2
1=n1, where

�sði;jÞ is defined in (10).

2. In addition, when S2
1=n1rk2S2

m=nm, it can be seen that Q ð ~rði;jÞÞoQ ð ~rði0 ;j0 ÞÞ when i04 i; j0o j, and the strict inequality

constraint holds for ~rði;jÞ and ~rði0 ;j0 Þ, since ~rði;jÞ minimizes Q ðrÞ over larger parameter space than ~rði0 ;j0 Þ. Let n(i) be the largest j

values for fixed i such that the inequality constraint holds for ~rði;jÞ and ~nðiÞ ¼maxfnð1Þ; . . . ;nði�1Þg. Then, we only need to

consider i when nðiÞ4 ~nðiÞ, i.e. for i, we only need to consider j¼ ~nðiÞþ1; . . . ;m. If ~nðiÞ ¼m for some i, then we can stop and

need not calculate ~rðl;jÞ for l¼ iþ1; . . . ;m�1. &

Proof of Proposition 2.2. (a) Under the constraint that s1 ¼ s2 ¼ � � � ¼ si ¼ s and sj ¼ sjþ1 ¼ � � � ¼ sm ¼ s=k,

Q ðrÞ

@s2
¼

Pi
l ¼ 1 nlþ

Pm
l ¼ j nl

2s4
s2�

Pi
l ¼ 1 S2

l þk2
Pm

l ¼ j S2
lPi

l ¼ 1 nlþ
Pm

l ¼ j nl

 !
:

Therefore the result follows.

(b) The proof is similar to the proof of (a). &
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